

MODULE SPECIFICATION PROFORMA

 Module Code:
 COM457

 Module Title:
 Discrete Computational Methods

 Level:
 4
 Credit Value:
 20

 Cost Centre(s):
 GACP
 HECoS code:
 100960

Faculty:	Arts, Science and Technology	Module Leader:	Bindu Jose	
Scheduled learning and teaching hours				48 hrs
Guided independent study				152 hrs
Placement				0 hrs
Module duration (total hours)				200 hrs

Programme(s) in which to be offered (not including exit awards)	Core	Option
BSc (Hons) Computer Science	~	
BSc (Hons) Computer Science (with Industrial Placement)	~	
BSc (Hons) Cyber Security	~	
BSc (Hons) Cyber Security (with Industrial Placement)	~	
BSc (Hons) Applied Cyber Security	~	

Pre-requisites	
None.	

Office use only

Initial approval:	30/08/2018	Version no:2
With effect from:	01/09/2018	
Date and details of	of revision: Jan 22: Addition of DA programme title	Version no:

Module Aims

The module aims to provide students with a grounding in the broad logical and mathematical principles that will support and underpin their future studies in their respective subject discipline. This module will also enable students to apply relevant mathematical methods and techniques to practical problems.

Intended Learning OutcomesKey skills for employabilityKS1Written, oral and media communication skillsKS2Leadership, team working and networking skillsKS3Opportunity, creativity and problem solving skillsKS4Information technology skills and digital literacyKS5Information management skills

- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At the end of this module, students will be able to		Key Skills		
-		KS1	KS2	
1	Recognize, describe and apply correct mathematical notation	KS3	KS4	
		KS5	KS6	
2	Express and manipulate mathematical concepts with the necessary rigour.	KS1	KS2	
		KS3	KS4	
		KS5		
3	Identify and apply appropriate mathematical tools and methods in solving real-life and computing-related problems.	KS1	KS2	
		KS3	KS4	
		KS5		
4	Appreciate how well-designed simple algorithms can solve complex computational problems	KS1	KS2	
		KS3	KS4	
		KS5		
	Solve mathematical problems using appropriate tools/methods/formula/algorithms, decision making and	KS1	KS2	
5		KS3	KS4	
	independent thought.	KS5		
Transferable skills and other attributes				
٠	Personal motivation, organisation and time management			
•	Ability to collaborate and plan			
•	Written and verbal communication skills			
•	Research and analytical skills			

Derogations

None.

Assessment:

Indicative Assessment Tasks:

The assessment will comprise of two pieces of course work, comprising of exercises and/or larger programs, program design, program listings and evidence of testing will be the main components of the assessments.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1, 2, 3, 4,	Coursework	60		1,800
2	5	In-class test	40	1.5 hrs	

Learning and Teaching Strategies:

The module will be delivered through a combination of formal lectures, tutorials, practical demonstrations and labs. Students will have access to lecture materials, and ancillary resources, via the University's VLE platform.

Syllabus outline:

Syllabus outline:

- Types of number and bases
- Units and conversions
- Algebra: representation and manipulation
- Linear algebra: vectors and matrices, linear transformation, solving systems of equations
- Discrete mathematics
- Sets and sequences
- Equalities and inequalities
- Statistics and probability Representing data: charts, graphs and tables Computational Thinking Algorithms Measuring Performance

Indicative Bibliography:

Essential reading

Ferreira Filho, W. (2017). Computer Science Distilled: Learn the Art of Solving Computational Problems. Code Energy.

Other indicative reading

Croft, A. and Davison, R. (2016). Foundation Maths, Sixth Edition. Prentice Hall.

Haggarty, R. (2002). Discrete Mathematics for Computing, Prentice Hall. Lehman, E.,

Leighton, F. T., & Meyer, A. R. (2010). Mathematics for computer science. URL: https://courses.csail.mit.edu/6.042/spring17/mcs.pdf Arora,

S., & Barak, B. (2009). Computational complexity: a modern approach. Cambridge University Press. URL: http://theory.cs.princeton.edu/complexity/book.pdf http://www.purplemath.com/ https://www.mathsisfun.com/